Medusozoa

De Wikipedia, la enciclopedia libre
(Redirigido desde «Agua Viva»)
 
Medusas
Rango temporal: 505 Ma - 0 Ma
Cámbrico-reciente

Mosaico de medusas.
Taxonomía
Reino: Animalia
Subreino: Eumetazoa
(sin rango) ParaHoxozoa
Planulozoa
Filo: Cnidaria
Subfilo: Medusozoa
Petersen, 1979
Clases

Las medusas (Medusozoa), también llamadas aguamalas, malaguas, aguavivas, aguacuajito, aguacuajada, cuajo del mar, o lágrimas de mar, son animales marinos pertenecientes al filo Cnidaria (más conocidos como celentéreos); son pelágicos, de cuerpo gelatinoso, con forma de campana de la que cuelga un manubrio tubular, con la boca en el extremo inferior, a veces prolongado por largos tentáculos cargados con células urticantes llamados cnidocitos. Aparecieron hace unos 500 millones de años en el Cámbrico.[1]

Las medusas se encuentran en todo el mundo, desde las aguas superficiales hasta las profundidades marinas. Los escifozoos (las "verdaderas medusas") son exclusivamente marinos, pero algunos hidrozoos de aspecto similar viven en agua dulce. Las medusas grandes y a menudo coloridas son comunes en las zonas costeras de todo el mundo. Las medusas de la mayoría de las especies son de crecimiento rápido, maduran en pocos meses y mueren poco después de reproducirse, pero la fase de pólipo, adherida al lecho marino, puede ser mucho más longeva. Las medusas existen desde hace al menos 500 millones de años[2]​ y posiblemente 700 millones o más, lo que las convierte en el grupo animal multiorgánico más antiguo.[3]

En algunas culturas, los humanos comen medusas. Se consideran un manjar en algunos países asiáticos, donde las especies del orden Rhizostomeae se prensan y salan para eliminar el exceso de agua. Investigadores australianos los han descrito como un "alimento perfecto": sostenible y rico en proteínas, pero relativamente bajo en energía alimentaria.[4]

También se utilizan en la investigación de biología celular y molecular, especialmente la proteína verde fluorescente que emplean algunas especies para la bioluminiscencia. Esta proteína se ha adaptado como reportero fluorescente para genes insertados y ha tenido un gran impacto en la microscopía de fluorescencia.

El concepto de medusa es tanto taxonómico como morfológico. Muchos cnidarios tienen una alternancia de generaciones, con pólipos sésiles que se reproducen asexualmente y medusas pelágicas que llevan a cabo la reproducción sexual. Solo los antozoos carecen de forma medusa; las otras tres clases de cnidarios (hidrozoos, escifozoos y cubozoos) poseen forma pólipo y forma medusa; dichas medusas presentan características distintivas en las tres clases, de modo que se puede hablar de hidromedusas, escifomedusas y cubomedusas respectivamente.

Asignación a grupos taxonómicos[editar]

Una Chrysaora colorata en el Acuario de la Bahía de Monterrey.

Filogenia[editar]

Definición[editar]

El término medusa corresponde a grandes rasgos a medusae[5]​, es decir, una etapa del ciclo vital de los Medusozoa. El biólogo evolutivo estadounidense Paulyn Cartwright da la siguiente definición general:

Típicamente, los cnidarios medusozoos tienen una etapa de medusa pelágica y depredadora en su ciclo vital; los estaurozoos son la excepción [ya que son pedunculados].[6]

Dado que medusa es un nombre común, su asignación a grupos biológicos es inexacta. Algunas autoridades han denominado medusas a las medusas peine y a ciertas salpas[7]​, aunque otras autoridades afirman que ninguna de ellas son medusas, que consideran deben limitarse a ciertos grupos dentro de los medusozoos.[8][9]

Medusazoos medusas[editar]

Las medusas no constituyen un clado, ya que incluyen la mayor parte de los Medusozoos, salvo algunos de los Hydrozoa.[10][11]

Medusa fósil, Rhizostomites lithographicus, una de las Scypho-medusae, del Kimmeridgiense (Jurásico tardío, 157 a 152 mya) de Solnhofen, Alemania.

Historia fósil[editar]

Dado que las medusas no tienen partes duras, los fósiles son escasos. El fósil inequívoco más antiguo de una medusa de natación libre es Burgessomedusa, del Cámbrico medio del Esquisto de Burgess de Canadá, que probablemente sea un grupo de medusas caja (Cubozoa) o Acraspeda (el clado que incluye Staurozoa, Cubozoa y Scyphozoa). Otros registros del Cámbrico de China y Utah (Estados Unidos) son inciertos y posiblemente representen ctenóforos.[12]

Morfología[editar]

Morfología de una hidromedusa
1.- Ectodermis; 2.- Mesoglea; 3.- Gastrodermis; 4.- Estómago; 5.- Canal radial; 6.- Canal circular; 7.- Tentáculo; 8.- Velo; 9.- Anillo nervioso externo; 10.- Anillo nervioso interno; 11.- Gónada; 12.- Manubrio; 13.- Boca; 14.- Exumbrela; 15.- Subumbrela.

Las medusas tienen forma de campana o sombrilla. La zona aboral (el polo opuesto a la boca, véase simetría radial) es convexa y se denomina exumbrela y la zona oral, cóncava, subumbrela.[13]​ Del borde de la exumbrela cuelgan varios tentáculos provistos de numerosos cnidocitos, las células urticantes típicas de los cnidarios[14]​. De la subumbrela cuelga el manubrio, en el extremo del cual se abre la boca, que también funciona como ano, en su extremo. La boca se abre a la cavidad gastrovascular, donde se produce la digestión y se absorben los nutrientes. Está subdividida por cuatro gruesos septos en un estómago central y cuatro bolsas gástricas. La cavidad gastrovascular de estos animales posee un estómago central del que parten bolsas gástricas o diversos canales radiales, que pueden continuarse dentro de los tentáculos; de este modo, los nutrientes pueden distribuirse con mayor facilidad por todo el cuerpo. [13]

Escifozoos varados en una llanura mareal del Cámbrico en Blackberry Hill, Wisconsin.

Los cuatro pares de gónadas están unidos a los septos y, cerca de ellos, cuatro embudos septales se abren al exterior, lo que quizá proporcione una buena oxigenación a las gónadas. Cerca de los bordes libres de los septos, los filamentos gástricos se extienden hacia la cavidad gástrica; están armados con nematocistos y células productoras de enzimas y desempeñan un papel en el sometimiento y digestión de la presa. En algunos escifozoos, la cavidad gástrica está unida a canales radiales que se ramifican ampliamente y pueden unirse a un canal anular marginal. Los cilios de estos canales hacen circular el fluido en una dirección regular.[13]

El conulariido Conularia milwaukeensis del Devónico Medio de Wisconsin.

El tejido que forma su cuerpo se denomina mesoglea y, a diferencia de los pólipos, es típicamente muy grueso; suele ser gelatinoso, pero puede alcanzar consistencia cartilaginosa en algunas especies.[13]​ La mesoglea está compuesta en un 95 % o más por agua[15]​, y también contiene colágeno y otras proteínas fibrosas, así como amebocitos errantes que pueden engullir restos y bacterias. La mesogloea está delimitada por la epidermis en el exterior y la gastrodermis en el interior.

La medusa caja tiene una estructura muy similar. Tiene una campana cuadrada en forma de caja. De cada una de las cuatro esquinas inferiores cuelga un corto pedalium o pedúnculo. El borde de la campana se pliega hacia dentro para formar un estante conocido como velarium que restringe la apertura de la campana y crea un potente chorro cuando la campana pulsa, lo que permite a las medusas caja nadar más rápido que las medusas verdaderas.[13]​ Los hidrozoos también son similares, normalmente con solo cuatro tentáculos en el borde de la campana, aunque muchos hidrozoos son coloniales y pueden no tener una fase medusal de vida libre. En algunas especies se forma una yema no separable conocida como gonóforo que contiene una gónada pero carece de muchas otras características medusales como tentáculos y rhopalia.[13]​ Las medusas pedunculadas están unidas a una superficie sólida por un disco basal y se asemejan a un pólipo, cuyo extremo oral se ha desarrollado parcialmente en una medusa con lóbulos portadores de tentáculos y un manubrio central con boca de cuatro lados.[13]

La mayoría de las medusas carecen de sistemas especializados de osmorregulación, respiración y circulación, así como de sistema nervioso central. Los nematocistos, que liberan el aguijón, están situados principalmente en los tentáculos; las medusas verdaderas también los tienen alrededor de la boca y el estómago.[16]​ Las medusas no necesitan un sistema respiratorio porque el oxígeno suficiente se difunde a través de la epidermis. Tienen un control limitado sobre su movimiento, pero pueden navegar con las pulsaciones de su cuerpo en forma de campana; algunas especies nadan activamente la mayor parte del tiempo, mientras que otras lo hacen a la deriva.[17]​ Los rhopalia contienen órganos sensoriales rudimentarios capaces de detectar la luz, las vibraciones transmitidas por el agua, el olor y la orientación.[13]​ En la epidermis se encuentra una red de nervios denominada "red nerviosa".[18][19]​Aunque tradicionalmente se pensaba que no tenían un sistema nervioso central, podría considerarse que la concentración de la red nerviosa y las estructuras similares a los ganglios constituyen uno en la mayoría de las especies.[20]​ Una medusa detecta estímulos y transmite impulsos tanto a través de la red nerviosa como alrededor de un anillo nervioso circular, a otras células nerviosas. Los ganglios rhopaliales contienen neuronas marcapasos que controlan el ritmo y la dirección de la natación.[13]

En muchas especies de medusas, los rhopalia incluyen ocelos, órganos sensibles a la luz capaces de distinguir la luz de la oscuridad. Generalmente se trata de ocelos con manchas pigmentarias, que tienen algunas de sus células pigmentadas. Los rhopalia están suspendidos en pedúnculos con pesados cristales en un extremo, que actúan como giroscopios para orientar los ojos hacia el cielo. Ciertas medusas miran hacia arriba, hacia el dosel del manglar, mientras realizan una migración diaria desde los manglares a la laguna abierta, donde se alimentan, y de vuelta.[3]

Las medusas caja tienen una visión más avanzada que los otros grupos. Cada individuo tiene 24 ojos, dos de los cuales son capaces de ver el color, y cuatro áreas paralelas de procesamiento de la información que actúan en competencia[21]​, lo que supuestamente las convierte en uno de los pocos tipos de animales que tienen una visión de 360 grados de su entorno.[22]

Reproducción y desarrollo[editar]

Desarrollo de las escifomedusas.

El subfilo Medusozoa incluye todos los cnidarios con una fase de medusa en su ciclo vital. Del huevo se libera una larva llamada plánula pelágica en forma de pera y completamente ciliada que, cuando encuentra un sustrato apropiado, se fija y se transforma en un pólipo asexual; los pólipos producen medusas sexuadas que cierran el ciclo. El subfilo incluye los taxones principales, Scyphozoa (medusas grandes), Cubozoa (medusas caja) e Hydrozoa (medusas pequeñas), y excluye Anthozoa (corales y anémonas de mar).[13]​ Esto sugiere que la forma de medusa evolucionó después de los pólipos.[23]​ Los medusozoos tienen simetría tetrámera, con partes en cuatros o múltiplos de cuatro[13]

Mastigias papua nadando en el Parque de la Vida Marina de Tokio.

En las clases Hydrozoa y Scyphozoa, los pólipos se reproducen asexualmente formando yemas de las cuales surgirán medusas sexuadas, cosa que no ocurre en Cubozoa. Las cuatro clases principales de cnidarios medusozoos son:

  • Los escifozoos se denominan a veces verdaderas medusas, aunque no son más medusas que las demás aquí enumeradas. Tienen simetría tetra-radial. La mayoría tiene tentáculos alrededor del margen exterior de la campana en forma de cuenco, y largos brazos orales alrededor de la boca en el centro de la subumbrela.[13]
  • Los Cubozoa tienen una campana (redondeada) en forma de caja, y su velarium les ayuda a nadar más rápidamente. Las medusas caja pueden estar más emparentadas con las medusas escifozoas que con los hidrozoos.[23]
  • Hydrozoa también tienen simetría tetra-radial, casi siempre tienen un velum (diafragma utilizado en la natación) unido justo dentro del margen de la campana, no tienen brazos orales, sino una estructura central mucho más pequeña parecida a un tallo, el manubrio, con una abertura bucal terminal, y se distinguen por la ausencia de células en la mesoglea. Las hidromedusas se forman por gemación a partir de yemas (gonóforos) sobre los pólipos, ya sea a partir de sus paredes o en gonozoides especializados.[13]
  • Scyphozoa. Las escifomedusas se originan a partir de pequeños pólipos por un proceso llamado estrobilación, en el cual el pólipo (escifistoma) se divide en discos superpuestos; estos discos se liberan como larvas pelágicas llamadas éfiras que darán origen a medusas sexuadas.[13]

La mayoría de las medusas tienen los sexos separados (dioicas). Durante la reproducción sexual, las medusas liberan los gametos (óvulos y espermatozoides) en el agua, donde se produce la fecundación, o bien los espermatozoides fecundan los óvulos en el interior del cuerpo de la medusa hembra.

Hay más de 200 especies de Scyphozoa, unas 50 especies de Staurozoa, unas 50 especies de Cubozoa, y los Hydrozoa incluyen unas 1000-1500 especies que producen medusas, pero muchas más especies que no lo hacen.[24][25]

Bioluminiscencia[editar]

Algunos tipos de medusa son bioluminiscentes, es decir, brillan. Tanto algunas medusas marinas como dulceacuícolas tienen esta capacidad. Las medusas usan su bioluminiscencia para advertir a sus depredadores de su toxicidad. Un ejemplo de medusa bioluminiscente es la hidromedusa gelatina cristal (Aequorea victoria).

Medusas en el acuario Inbursa, México.

Toxicidad de los tentáculos[editar]

Las medusas poseen tentáculos formados por células urticantes, o nematocistos, que usan para capturar presas y como forma de defensa. Estas células contienen una cápsula con un filamento tóxico (venenoso). Al contacto con una presa, los filamentos se eyectan e inyectan veneno. Los tentáculos de medusas muertas que a veces se encuentran en las playas pueden ser venenosos durante varias semanas.[26]

La toxicidad de la picadura de la medusa varía según la especie. La mayoría de las medusas que encuentran los bañistas provocan picaduras dolorosas y con una sensación de ardor, pero pasajeras. Sin embargo se aconseja a los bañistas salir del agua inmediatamente, porque existe la posibilidad de padecer un shock anafiláctico y ahogarse.[27]

Las picaduras de la medusa fisalia, también llamada carabela portuguesa (Physalia physalis) y ortiga de mar (Chrysaora quinquecirrha) rara vez son mortales. Por el otro lado, las picaduras de la medusa avispa de mar (Chironex flecheri) pueden causar la muerte en minutos, por lo que se le considera entre los animales con el veneno más potente en todo el reino animal.[28]

Algunos peces como el "chicharro" son inmunes al veneno de las medusas y por eso las utilizan como escondite de los posibles predadores.

Las medusas de los géneros Cyanea y Physalia llegan a tener tentáculos de hasta 40 metros, en los cuales algunos peces se refugian. Pero en contacto con el hombre, se pueden producir ciertas reacciones alérgicas que podrían causar la muerte.

Tratamiento[editar]

La mayoría de las especies de medusas que presentan un riesgo para los humanos pertenecen a la clase Cubozoa, y su picadura puede ser neutralizada al usar vinagre en el lugar de la herida. Sin embargo, no es del todo efectiva con otras medusas pertenecientes a otras clases, por lo que es necesario proceder con precaución.[29]

Filogenia[editar]

Chrysaora quinquecirrha.

Las relaciones filogenéticas estarían conformadas por las siguientes clases:[30]

Medusozoa 

 Stauromedusae

 

 Hydrozoa

 Cubozoa

 Scyphozoa

Algunas especies de medusa[editar]

Cotylorhiza tuberculata

Evolución[editar]

El filo Cnidaria es ampliamente aceptado como monofilético y formado por dos clados, Anthozoa y Medusozoa. Los antozoos incluyen las clases Hexacorallia, los corales duros, y Octocorallia, los corales blandos, así como Ceriantharia, las anémonas que viven en tubos. Existe un fuerte consenso de que este grupo haya sido el primero en separarse de la línea ancestral.[31]

Medusozoa incluye las clases Staurozoa, Cubozoa, Scyphozoa e Hydrozoa, pero las relaciones entre ellas no están claras. El análisis utilizando subunidades de ARN ribosómico sugiere que dentro de Medusozoa, Staurozoa fue el primer grupo en divergir, con Cubozoa y Scyphozoa formando un clado, un grupo hermano de Hydrozoa. Estudios adicionales sobre el orden de los genes mitocondriales apoyan esta opinión,[31]​ y su posesión de genomas mitocondriales lineales es una evidencia sorprendente de la monofilia de los medusozoos.[32]​ El grupo principal de Medusozoa también incluye Auroralumina attenboroughii, el depredador animal más antiguo conocido de finales del Período Ediacárico.[33]​ la medusa Burgess del Cámbrico medio del Esquisto de Burgess es la medusa de vida libre más antigua conocida (comúnmente conocida como medusa).[34]

Las afinidades de la clase Polypodiozoa, que contiene la única especie Polypodium hydriforme, no están claras desde hace mucho tiempo. Esta especie es un endoparásito de huevos de peces y tiene un ciclo de vida peculiar. Tradicionalmente se le ha considerado un cnidario por su posesión de nematocistos, pero estudios moleculares utilizando secuencias de ADN ribósmico 18S lo han situado más cerca de los Myxozoa. Estudios adicionales que involucran secuencias de ADN ribósmico 28S sugieren que es parte del clado de hidrozoos Leptothecata o un taxón hermano de Hydrozoa, y no se agrupa con mixozoos.[35]

Uso en alimentación humana[editar]

Las medusas Rhopilema (Rhopilema hispidum y Rhopilema esculentum) y Nemopilema nomurai son comestibles.[36]

Doce de las aproximadamente 85 especies descritas de Rhizostomeae se capturan y comercializan internacionalmente. La mayoría de las capturas se realizan en el sudeste asiático.[37]​ Las especies Rhopilema esculentum (nombre en chino: 海蜇 hǎizhē, que significa "ortiga de mar") y Stomolophus meleagris (medusa “bala de cañón” en Estados Unidos) son las más apreciadas, por ser de mayor tamaño y tener una estructura más rígida que las otros sifozoos. Además, sus toxinas son inofensivas para los humanos.[38]

Tiras de medusa en salsa de soja, aceite de sésamo y pimienta.

Los métodos de procesamiento tradicionales, llevados a cabo por un “Maestro de las medusas”, implican de 20 a 40 días y varias operaciones, en las que el “paraguas” y los brazos bucales se tratan con una mezcla de sal de mesa y alumbre, mientras se comprimen con un peso.[38]​ Antes de la salazón se retiran las gónadas y las mucosas. Este proceso reduce la licuefacción, los olores y el desarrollo de organismos nocivos, además de hacer que el producto sea más seco y ácido, con una textura "crujiente".[38]​ Las medusas preparadas de esta manera retienen entre el 7 y el 10 % de su peso vivo, a pesar de que el producto contiene alrededor del 95 % de agua y sólo entre el 4 y el 5 % de proteínas, por lo que es relativamente bajo en calorías.[38]​ Las medusas recién procesadas son de color blanco o crema y se vuelven amarillas o marrones con el almacenamiento prolongado.

En China, las medusas procesadas se remojan en agua durante la noche y se cocinan o se comen crudas al día siguiente. El producto se pica finamente y el plato suele servirse con un aderezo de aceite, salsa de soja, vinagre y azúcar, o como ensalada con verduras.[38]​ En Japón, el producto simplemente se enjuaga con agua, se corta en tiras y se sirve con vinagre como aperitivo.[38][39]

En el sur de los Estados Unidos, incluidas la costa atlántica y el golfo de México, se ha desarrollado una pesquería de Stomolophus meleagris para exportar a países asiáticos.[38]

Véase también[editar]

Referencias[editar]

  1. The National Science Foundation.
  2. Public Library of Science (2007). «Fossil Record Reveals Elusive Jellyfish More Than 500 Million Years Old». Science Daily (en inglés). 
  3. a b Angier, Natalie (2013). «So Much More Than Plasma and Poison». The New York Times (en inglés). Consultado el 2 de diciembre de 2011. 
  4. Rodd, Isabelle (2020). «Why jellyfish could be a 'perfect food'». BBC News (en inglés). 
  5. «Jellyfish». Online Etymology Dictionary (en inglés). 
  6. Cartwright, Paulyn; Halgedahl, Susan; Hendricks, Jonathan (2007). «Exceptionally Preserved Jellyfishes from the Middle Cambrian». PLOS ONE (en inglés) 2 (10). doi:10.1371/journal.pone.0001121. 
  7. «Jellyfish Spotting | Species of Jellyfish». Policy-oriented marine Environmental Research in the Southern European Seas (en inglés). 
  8. Mills, C. E. (2010). «Ctenophores». University of Washington (en inglés). 
  9. «Our jelly-like relatives: Common misconceptions about salps». Nereus Program (en inglés). 
  10. Zapata, Felipe; Goetz, Freya; Smith, Stephen (2015). «Phylogenomic Analyses Support Traditional Relationships within Cnidaria». PLOS ONE (en inglés). doi:10.1371/journal.pone.0139068. 
  11. Kayal, Ehsan; Bentlage, Bastian; Pankey, Sabrina (2018). «Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits». BMC Evolutionary Biology (en inglés) 18 (1). doi:10.1186/s12862-018-1142-0. 
  12. Moon, Justin; Caron, Jean-Bernard; Moysiuk, Joseph (2023). «A macroscopic free-swimming medusa from the middle Cambrian Burgess Shale». Proceedings of the Royal Society B: Biological Sciences (en inglés) 290. ISSN 0962-8452. doi:10.1098/rspb.2022.2490. 
  13. a b c d e f g h i j k l m n Ruppert, Edward; Fox, Richard; Barnes, Robert (2004). Invertebrate Zoology, 7th edition (en inglés). Cengage Learning. ISBN 978-81-315-0104-7. 
  14. Kayal, Ehsan; Bentlage, Bastian; Collins, Allen G. et al. (2012). «Evolution of Linear Mitochondrial Genomes in Medusozoan Cnidarians». Genome Biology and Evolution 4 (1): 1-12. PMC 3267393. PMID 22113796. doi:10.1093/gbe/evr123. 
  15. Hsieh, Yun-Hwa; Rudloe, Jack (1994). «Potential of utilizing jellyfish as food in Western countries». Trends in Food Science & Technology (en inglés) 5 (7): 225-229. doi:10.1016/0924-2244(94)90253-4. 
  16. «Nematocysts». Jellieszone (en inglés). 2015. 
  17. Kier, William (2012). «The diversity of hydrostatic skeletons». Journal of Experimental Biology (en inglés) 215: 1247-1257. doi:10.1242/jeb.056549. 
  18. Satterlie, R. A. (2002). «Neuronal control of swimming in jellyfish: a comparative story». Canadian Journal of Zoology (en inglés) 80 (10): 1654-1669. doi:10.1139/z02-138. 
  19. Katsuki, Takeo; Greenspan, Ralph. «Jellyfish nervous systems». Current Biology (en inglés) 23 (14). doi:10.1016/j.cub.2013.03.057. 
  20. Satterlie, Richard (2011). «Do jellyfish have central nervous systems?». Journal of Experimental Biology (en inglés) 214 (8): 1215-1223. doi:10.1242/jeb.043687. 
  21. Wehner, R. (2005). «Sensory physiology: brainless eyes». Nature (en inglés) 435 (7039): 157-159. doi:10.1038/435157a. 
  22. «Multi-eyed jellyfish helps with Darwin's puzzle». New Scientist (en inglés). 
  23. a b «Cnidaria». Tree of Life (en inglés). 2012. 
  24. Marques, A. C.; Collins, A. G. (2004). «Cladistic analysis of Medusozoa and cnidarian evolution». Invertebrate Biology (en inglés) 123: 23-42. doi:10.1111/j.1744-7410.2004.tb00139.x. 
  25. Kramp, P. L. (1961). «Synopsis of the Medusae of the World». Journal of the Marine Biological Association of the United Kingdom (en inglés) 40: 1-469. doi:10.1017/s0025315400007347. 
  26. «Toxicidad del veneno de las medusas: composición». Medusas Wiki. 14 de octubre de 2016. Consultado el 12 de abril de 2017. 
  27. «Picadura de Medusa - Prevenir y Curar». Archivado desde el original el 4 de septiembre de 2016. Consultado el 2 de septiembre de 2016. 
  28. «La medusa más venenosa de los océanos». 
  29. Fenner, Peter J; Williamson, John A; Burnett, Joseph W; Rifkin, Jacquie (1993-04). «First aid treatment of jellyfish stings in Australia Response to a newly differentiated species». Medical Journal of Australia (en inglés) 158 (7): 498-501. ISSN 0025-729X. doi:10.5694/j.1326-5377.1993.tb137588.x. Consultado el 11 de septiembre de 2023. 
  30. R. Steele, Ch. David & U. Technau 2010, A genomic view of 500 million years of cnidarian evolution Published online 2010 Nov 1. doi: 10.1016/j.tig.2010.10.002 Trends Genet. 2011 Jan; 27(1): 7–13. PMC 2012 Jan 1. PMC3058326 NIHMS246975
  31. a b J. Wolfgang Wägele; Thomas Bartolomaeus (2014). Deep Metazoan Phylogeny: The Backbone of the Tree of Life: New insights from analyses of molecules, morphology, and theory of data analysis. De Gruyter. p. 67. ISBN 978-3-11-037296-0. 
  32. Bridge, D.; Cunningham, C.W.; Schierwater, B. et al. (1992). «Class–level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure». Proceedings of the National Academy of Sciences USA (en inglés) 89 (18): 8750-8753. Bibcode:1992PNAS...89.8750B. PMC 49998. PMID 1356268. doi:10.1073/pnas.89.18.8750. 
  33. Dunn, F. S.; Kenchington, C. G.; Parry, L. A.; Clark, J. W.; Kendall, R. S.; Wilby, P. R. (25 de julio de 2022). «A crown-group cnidarian from the Ediacaran of Charnwood Forest, UK». Nature Ecology & Evolution (en inglés) 6 (8): 1095-1104. doi:10.1038/s41559-022-01807-x. 
  34. Moon, Justin; Caron, Jean-Bernard; Moysiuk, Joseph (9 de agosto de 2023). «A macroscopic free-swimming medusa from the middle Cambrian Burgess Shale». Proceedings of the Royal Society B: Biological Sciences (en inglés) 290 (2004). ISSN 0962-8452. PMC 10394413. PMID 37528711. doi:10.1098/rspb.2022.2490. 
  35. Evans, Nathaniel M.; Lindner, Alberto; Raikova, Ekaterina V. et al. (2008). «Phylogenetic placement of the enigmatic parasite, Polypodium hydriforme, within the Phylum Cnidaria». BMC Evolutionary Biology (en inglés) 8 (139): 139. PMC 2396633. PMID 18471296. doi:10.1186/1471-2148-8-139. 
  36. Kawahara, M.; Uye, S.; Burnett, J.; Mianzan, H. (2006). «Stings of edible jellyfish (Rhopilema hispidum, Rhopilema esculentum and Nemopilema nomurai) in Japanese waters». Toxicon 48 (6): 713-6. PMID 16962626. doi:10.1016/j.toxicon.2006.06.015. 
  37. Omori, M. and E. Nakano, 2001. Jellyfish fisheries in southeast Asia. Hydrobiologia 451: 19-26.
  38. a b c d e f g Y-H. Peggy Hsieh, Fui-Ming Leong, and Jack Rudloe (2004). «Jellyfish as food». Hydrobiologia (en inglés) 451 (1-3): 11-17. doi:10.1023/A:1011875720415. 
  39. Firth, F.E. (1969). The Encyclopedia of Marine Resources (en inglés). New York: Van Nostrand Reinhold Co. ISBN 0442223994. 

Enlaces externos[editar]